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Abstract—A stereoselective synthesis of the C;4—C,¢ fragment of the naturally occurring, cytotoxic macrolide FD-891, is described.
Asymmetric Evans aldol reactions and aldehyde Brown allylations are key steps of the synthesis.

© 2004 Elsevier Ltd. All rights reserved.

The cytotoxic metabolite FD-891 was isolated from the
fermentation broth of Streptomyces graminofaciens A-
8890 and was found active against several tumor cell
lines. In addition, it was found to potently prevent both
perforin- and FasL-dependent CTL-mediated killing
pathways. In contrast to the structurally related concan-
amycin A, however, it was unable to inhibit vacuolar
acidification.! We have now faced the problem of syn-
thesizing this bioactive metabolite and have chosen the
convergent retrosynthesis shown in Scheme 1. Accord-
ing to it, the molecule of FD-891 is disconnected to frag-
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Scheme 1. Structure of FD-891 and main retrosynthetic disconnection.
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ments A (C;—C;3) and B (C14—Cy¢) via an esterification
and a Heck coupling. Which one of these two reactions
will be the final macrocyclization process still remains an
open issue to be decided at a later stage. Indeed, both
macrolactonizations’ and intramolecular Heck reac-
tions® are amply represented in the literature.

In the present communication, we will describe the syn-
thetic work performed to achieve the preparation of
fragment B, which carries the protecting groups
R =TBS (¢-butyldimethylsilyl) and MOM (methoxy-
methyl).* This fragment, which contains 7 of the 12 ster-
eocenters of the molecule, was further retrosynthetically
disconnected as shown in Scheme 2. One key structural
transformation in this retrosynthesis (B — I) is the
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Scheme 2. Retrosynthetic disconnection of fragment B.
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stereoselective allylation of a chiral a-methyl aldehyde
and was planned to be performed in an asymmetric
way using one of Brown’s chiral allylboration reagents.’
The protecting group TPS (z-butyldiphenylsilyl) was se-
lected with the idea in mind of its later selective cleavage
in the presence of two TBS groups. The two other key
retrotransformations, II — III and III — IV, are aldol
reactions conceived to create the C,,—C,5 dipropionate
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Scheme 3. Stereoselective synthesis of compound B. Reagents and
conditions: (a) (COCIl),, DMSO, CH,Cl,, Et;N, 1h, 0°C; (b) 16,
Bu,BOTS, Et3N, 0°C, then 3, 2.5h, 0°C, 89% overall from 2; (c)
MeNHOMe, AlMe;, THF, 3h, rt, 79%; (d) TBSOTT, 2,6-lutidine,
CH,Cl,, rt, 1h, 92%; (e) DIBAL, THF, —78°C, 30min; (f) 17,
Bu,BOTS, Et;N, 0°C, then 6, 3h, 0°C, 75% overall from 5; (g)
TBSOTHT, 2,6-lutidine, CH,Cl,, rt, 1 h, 90%; (h) H,O,, aq LiOH, THF,
0°C —rt, overnight; (i) MeNHOMe, 1,1’-carbonyldiimidazole,
CH,Cl,, rt, 12h, 80% overall from 8; (j) MeMgBr, THF, 0°C, 1h,
70%; (k) Me,AICI (2.5equiv), Bu;SnH, CH,Cl,, —90°C, 1h, 91% (92:8
diastereoisomeric mixture); (1) MeOTf, 2,6-di-t-butylpyridine, CHCl;,
A, 4h, 84%; (m) 10% NaOH, MeOH, A, 30h, 84%; (n) (COCl),,
DMSO, CH,Cl,, Et;N, 20min, 0°C; (o) allylBlpc, [from (—)-DIP-CI
and allylmagnesium bromide], Et,O, 1h, —90°C, 55% overall from 13
as a single stereoisomer; (p) MOMCI, EtNi-Pr,, CH,Cl,, rt, overnight,
79%.

segment. In the actual synthesis, both aldol steps
were executed with the aid of the chiral oxazolid-
inones developed by Evans and his group.® The ulti-
mate chirality source was the commercially available
ester 1.

Scheme 3 depicts the actual synthetic sequence, which
led to compound B. The chiral, commercially available
ester 1 was converted into the known primary alcohol
27 via a literature procedure. Swern oxidation of the
latter to aldehyde 3 was followed by Evans asymmetric
aldolization using the Z boron enolate of the chiral oxa-
zolidinone 16.°* This provided aldol adduct 4 as an
essentially single sterecoisomer. Conversion of 4 into
the Weinreb amide® and silylation afforded 5, which
was then reduced (DIBAL) to aldehyde 6. The latter
compound was submitted to a second aldolization
with Evans oxazolidinone 17,%% followed by silylation
and amidation. This yielded Weinreb amide 9,° which
was converted into methyl ketone 10 by treatment with
methylmagnesium bromide. Stereoselective reduction of
the carbonyl group of 10 under chelation control!*~!3 to
alcohol 11 and subsequent O-methylation with methyl
triflate/2,6-di-tert-butylpyridine'* afforded compound
12. Selective cleavage of the OTPS group in 12 under
alkaline conditions!> provided the primary alcohol 13,
which was then oxidized to aldehyde 14. Asymmetric
allylation of the latter> afforded secondary alcohol 15,
which, through protection of the secondary alcohol
group as its MOM derivative,'® afforded the desired
fragment B.!”

In summary, a stereoselective synthesis of the Cj4—Csyg
fragment of the cytotoxic macrolide FD-891 has been
achieved. Studies toward the total synthesis of the natu-
ral product are underway and will be published in due
course.
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0il; [a]p —3.1 (¢ 0.86, CHCl5), 'H NMR (500 MHz) 6 5.82
(1H, m, H-2), 5.10 (1H, dd, J = 17, 1.5Hz, H-1t), 5.04 (1H,
dd, J=10, 1Hz, H-1c), 4.65 (2H, AB system, J = 7Hz,
MOM), 3.81 (1H, dd, J = 5.8, 1.6 Hz, H-10), 3.70 (1H, m,
H-8), 3.47 (1H, m, H-4), 3.37 (3H, s, OMe), 3.30 (3H, s,
OMe), 3.14 (1H, quint, J = 6.5Hz, H-12), 2.30 (2H, m, H-
3), 1.75-1.50 (5H, br m, H-5/H-6/H-9), 1.45-1.40 (2H, m,
H-7), 1.12 (3H, d, J = 6.5Hz, H-13), 0.94 (3H, d, J = 7THz,
Me-C), 0.91 (3H, d, J=7Hz, Me-C), 0.90 (9H, s, t-Bu),
0.89 (9H, s, #-Bu), 0.86 (3H, d, J = 7THz, Me-C), 0.09 (3H,
s, Me-Si), 0.07 (3H, s, Me-Si), 0.06 (3H, s, Me-Si), 0.05
(3H, s, Me-Si). '*C NMR (125MHz) § 18.5, 18.3 (C),
135.6, 81.4, 79.9, 73.4, 72.6, 43.4, 41.2, 36.6 (CH), 116.7,
96.1, 36.0, 33.4, 27.2 (CH,), 56.4, 55.6, 26.1 (x3), 26.0 (x3),
16.5, 14.6, 11.1, 10.6, —3.3, —3.5, —4.0, —4.1 (CH3). HR
EIMS m/z (% rel. int.) 517.3756 (M" — -Bu, 3), 283 (20),
231 (55), 139 (34), 59 (100). Calcd for C3;Hgs05Si,-2-Bu,
517.3744.
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