

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7499-7501

Tetrahedron Letters

Stereoselective synthesis of the C_{14} - C_{26} fragment of the cytotoxic macrolide FD-891

Juan Murga,^{a,*} Jorge García-Fortanet,^a Miguel Carda^a and J. Alberto Marco^{b,*}

^aDepart. de Q. Inorgánica y Orgánica, Univ. Jaume I, Castellón, E-12080 Castellón, Spain ^bDepart. de Q. Orgánica, Univ. de Valencia, E-46100 Burjassot, Valencia, Spain

> Received 9 July 2004; revised 30 July 2004; accepted 3 August 2004 Available online 26 August 2004

Abstract—A stereoselective synthesis of the C_{14} — C_{26} fragment of the naturally occurring, cytotoxic macrolide FD-891, is described. Asymmetric Evans aldol reactions and aldehyde Brown allylations are key steps of the synthesis. © 2004 Elsevier Ltd. All rights reserved.

The cytotoxic metabolite FD-891 was isolated from the fermentation broth of *Streptomyces graminofaciens* A-8890 and was found active against several tumor cell lines. In addition, it was found to potently prevent both perforin- and FasL-dependent CTL-mediated killing pathways. In contrast to the structurally related concanamycin A, however, it was unable to inhibit vacuolar acidification.¹ We have now faced the problem of synthesizing this bioactive metabolite and have chosen the convergent retrosynthesis shown in Scheme 1. According to it, the molecule of FD-891 is disconnected to frag-

Scheme 1. Structure of FD-891 and main retrosynthetic disconnection.

Keywords: Macrolides; Cytotoxicity; FD-891; Asymmetric allylboration; Boron aldol reactions.

*Corresponding authors. Tel.: +34 96 3544337; fax: +34 96 3544328; e-mail: alberto.marco@uv.es

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.08.013

ments A (C₁–C₁₃) and B (C₁₄–C₂₆) via an esterification and a Heck coupling. Which one of these two reactions will be the final macrocyclization process still remains an open issue to be decided at a later stage. Indeed, both macrolactonizations² and intramolecular Heck reactions³ are amply represented in the literature.

In the present communication, we will describe the synthetic work performed to achieve the preparation of fragment **B**, which carries the protecting groups R = TBS (*t*-butyldimethylsilyl) and MOM (methoxymethyl).⁴ This fragment, which contains 7 of the 12 stereocenters of the molecule, was further retrosynthetically disconnected as shown in Scheme 2. One key structural transformation in this retrosynthesis ($B \rightarrow I$) is the

Scheme 2. Retrosynthetic disconnection of fragment B.

stereoselective allylation of a chiral α -methyl aldehyde and was planned to be performed in an asymmetric way using one of Brown's chiral allylboration reagents.⁵ The protecting group TPS (*t*-butyldiphenylsilyl) was selected with the idea in mind of its later selective cleavage in the presence of two TBS groups. The two other key retrotransformations, $\mathbf{II} \rightarrow \mathbf{III}$ and $\mathbf{III} \rightarrow \mathbf{IV}$, are aldol reactions conceived to create the C₂₂-C₂₅ dipropionate

Scheme 3. Stereoselective synthesis of compound B. Reagents and conditions: (a) (COCl)₂, DMSO, CH₂Cl₂, Et₃N, 1h, 0°C; (b) 16, Bu₂BOTf, Et₃N, 0°C, then 3, 2.5h, 0°C, 89% overall from 2; (c) MeNHOMe, AlMe3, THF, 3h, rt, 79%; (d) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt, 1h, 92%; (e) DIBAL, THF, -78°C, 30min; (f) 17, Bu₂BOTf, Et₃N, 0°C, then 6, 3h, 0°C, 75% overall from 5; (g) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt, 1 h, 90%; (h) H₂O₂, aq LiOH, THF, $0^{\circ}C \rightarrow rt$, overnight; (i) MeNHOMe, 1,1'-carbonyldiimidazole, CH₂Cl₂, rt, 12h, 80% overall from 8; (j) MeMgBr, THF, 0°C, 1h, 70%; (k) Me₂AlCl (2.5 equiv), Bu₃SnH, CH₂Cl₂, -90 °C, 1 h, 91% (92:8 diastereoisomeric mixture); (1) MeOTf, 2,6-di-t-butylpyridine, CHCl₃, Δ, 4h, 84%; (m) 10% NaOH, MeOH, Δ, 30h, 84%; (n) (COCl)₂, DMSO, CH₂Cl₂, Et₃N, 20min, 0°C; (o) allylBIpc₂ [from (-)-DIP-Cl and allylmagnesium bromide], Et₂O, 1h, -90°C, 55% overall from 13 as a single stereoisomer; (p) MOMCl, EtNi-Pr2, CH2Cl2, rt, overnight, 79%.

segment. In the actual synthesis, both aldol steps were executed with the aid of the chiral oxazolidinones developed by Evans and his group.⁶ The ultimate chirality source was the commercially available ester **1**.

Scheme 3 depicts the actual synthetic sequence, which led to compound **B**. The chiral, commercially available ester 1 was converted into the known primary alcohol 2^7 via a literature procedure. Swern oxidation of the latter to aldehyde 3 was followed by Evans asymmetric aldolization using the Z boron enolate of the chiral oxazolidinone 16.6a This provided aldol adduct 4 as an essentially single stereoisomer. Conversion of 4 into the Weinreb amide⁸ and silvlation afforded 5, which was then reduced (DIBAL) to aldehyde 6. The latter compound was submitted to a second aldolization with Evans oxazolidinone 17,^{6a} followed by silulation and amidation. This yielded Weinreb amide $9,^9$ which was converted into methyl ketone 10 by treatment with methylmagnesium bromide. Stereoselective reduction of the carbonyl group of **10** under chelation control¹⁰⁻¹³ to alcohol 11 and subsequent O-methylation with methyl triflate/2,6-di-tert-butylpyridine¹⁴ afforded compound 12. Selective cleavage of the OTPS group in 12 under alkaline conditions¹⁵ provided the primary alcohol 13, which was then oxidized to aldehyde 14. Asymmetric allylation of the latter⁵ afforded secondary alcohol 15, which, through protection of the secondary alcohol group as its MOM derivative,16 afforded the desired fragment **B**.¹⁷

In summary, a stereoselective synthesis of the C_{14} – C_{26} fragment of the cytotoxic macrolide FD-891 has been achieved. Studies toward the total synthesis of the natural product are underway and will be published in due course.

Acknowledgements

Financial support has been granted by the Spanish Ministry of Education (project BQU2002-00468), by the AVCYT (project GRUPOS03/180) and by the BANCAJA-UJI foundation (project P1B99-18). J.M. and J.G.-F. thank the Spanish Ministry of Education and Science for a Ramón y Cajal and for a pre-doctoral fellowship, respectively.

References and notes

- The structure of FD-891 was established with the aid of X-ray diffraction analyses on degradation products. See: Eguchi, T.; Kobayashi, K.; Uekusa, H.; Ohashi, Y.; Mizoue, K.; Matsushima, Y.; Kakinuma, K. Org. Lett. 2002, 4, 3383–3386.
- Bartra, M.; Urpí, F.; Vilarrasa, J. In *Recent Progress in the* Chemical Synthesis of Antibiotics and Related Microbial Products; Lukacs, G., Ed.; Springer: Berlin, 1993; Vol. 2, pp 1–65.
- Ojima, I.; Tzamarioudaki, M.; Li, Z.-Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635–662.

- 4. The synthesis of an intermediate related to fragment A has been recently reported: Chng, S.-S.; Xu, J.; Loh, T.-P. *Tetrahedron Lett.* **2003**, *44*, 4997–5000.
- (a) Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 1995, 500, 1–19; (b) Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23–35.
- (a) Evans, D. A. Aldrichim. Acta 1982, 15, 23–32; (b) Kim, B. M.; Williams, S. F.; Masamune, S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Winterfeldt, E., Eds.; Pergamon: Oxford, 1993; Vol. 2, pp 239–276; See also: Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1–200.
- Nicolaou, K. C.; Namoto, K.; Ritzén, A.; Ulven, T.; Shoji, M.; Li, J.; D'Amico, G.; Liotta, D.; French, C. T.; Wartmann, M.; Altmann, K. H.; Giannakakou, P. J. Am. Chem. Soc. 2001, 123, 9313–9323; However, we have prepared 2 via an adaptation of one route described for the TBS analogue: Chandrasekhar, S.; Reddy, C. R. Tetrahedron: Asymmetry 2002, 13, 261–268.
- 8. Sibi, M. P. Org. Prep. Proc. Int. 1993, 25, 15-40.
- 9. Low yields and conversion rates were observed in all attempts at direct formation of 9 from oxazolidinone 8 under standard conditions (MeNHOMe, AlMe₃). Therefore, we resorted to the alternative method described in Scheme 3.
- Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001, 123, 10840–10852; See also: Ooi, T.; Morikawa, J.; Uraguchi, D.; Maruoka, K. Tetrahedron Lett. 1999, 40, 2993–2996.
- Prior to the use of Bu₃SnH/Me₂AlCl, we tested reductants such as DIBAL and L-Selectride, which have proven useful in closely related instances: Boger, D. L.; Curran, T. T. J. Org. Chem. 1992, 57, 2235–2244. However, they displayed a low stereoselectivity in the present case (about 2:1).
- 12. The configuration of the stereocenter created in this step was established by total desilylation of **11** with TBAF and treatment of the resulting tetraol with 2,2-dimethoxypropane and an acid catalyst. This gave a monoacetonide **i**, which showed two methyl ¹³C NMR signals at ca. 30 and

19 ppm. This indicates that it is the acetonide of a *syn*-1, 3-diol¹³ and can only be that indicated below, as the internal acetonide would necessarily be *anti*.

- Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9–17.
- Experimental procedure taken from: Walba, D. M.; Thurmes, W. N.; Haltiwanger, R. C. J. Org. Chem. 1988, 53, 1046–1056. Meerwein's salt (trimethyloxonium tetrafluoroborate) proved ineffective in the present case.
- Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.; Yamada, H.; Nishizawa, M. *Tetrahedron* **1994**, *50*, 13369–13376.
- Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, third ed.; John Wiley and Sons: New York, 1999, pp 27–33.
- 17. Oil; $[\alpha]_D = -3.1$ (*c* 0.86, CHCl₃), ¹H NMR (500 MHz) δ 5.82 (1H, m, H-2), 5.10 (1H, dd, J = 17, 1.5 Hz, H-1t), 5.04 (1H, H-1t), 5.04 (1H, H-1t), 5.04 (1H, H-1t))dd, J = 10, 1 Hz, H-1c), 4.65 (2H, AB system, J = 7 Hz, MOM), 3.81 (1H, dd, J = 5.8, 1.6 Hz, H-10), 3.70 (1H, m, H-8), 3.47 (1H, m, H-4), 3.37 (3H, s, OMe), 3.30 (3H, s, OMe), 3.14 (1H, quint, J = 6.5 Hz, H-12), 2.30 (2H, m, H-3), 1.75-1.50 (5H, br m, H-5/H-6/H-9), 1.45-1.40 (2H, m, H-7), 1.12 (3H, d, *J* = 6.5 Hz, H-13), 0.94 (3H, d, *J* = 7 Hz, Me-C), 0.91 (3H, d, J = 7 Hz, Me-C), 0.90 (9H, s, t-Bu), 0.89 (9H, s, t-Bu), 0.86 (3H, d, J = 7 Hz, Me-C), 0.09 (3H, s, Me-Si), 0.07 (3H, s, Me-Si), 0.06 (3H, s, Me-Si), 0.05 (3H, s, Me-Si). 13 C NMR (125 MHz) δ 18.5, 18.3 (C), 135.6, 81.4, 79.9, 73.4, 72.6, 43.4, 41.2, 36.6 (CH), 116.7, 96.1, 36.0, 33.4, 27.2 (CH₂), 56.4, 55.6, 26.1 (×3), 26.0 (×3), 16.5, 14.6, 11.1, 10.6, -3.3, -3.5, -4.0, -4.1 (CH₃). HR EIMS m/z (% rel. int.) 517.3756 (M⁺ – t-Bu, 3), 283 (20), 231 (55), 139 (34), 59 (100). Calcd for C₃₁H₆₆O₅Si₂-t-Bu, 517.3744.